Friday Nov 22, 2024
Friday Nov 22, 2024

Brains consolidate motor memory during sleep:


Nepalnews
ANI
2022 Dec 20, 10:02, San Francisco
Representative Image. (Image Source: ANI)

Steph Curry of the Golden State Warriors uses muscle memory in his brain to make a free throw. Researchers at UC San Francisco (UCSF) have now demonstrated how this form of memory is consolidated when you sleep when your brain integrates the knowledge you learned that day to make physical actions automatic.

The study, which was released on December 14, 2022, in the journal named 'Nature', demonstrates that the brain accomplishes this by examining the successes and failures of a certain action. In the scenario, that entails going over all of Curry's free shots and eliminating all memories of them other than the ones that were successful or that the brain deemed to be "good enough." As a result, one can make free throws with a high degree of precision without having to focus on the necessary physical movements.

"Even elite athletes makes errors, and that's what makes the game interesting," said Karunesh Ganguly, MD, PhD, a professor of neurology and member of the UCSF Weill Institute for Neurosciences. "Motor memory isn't about perfect performance. It's about predictable errors and predictable successes. As long as the errors are stable from day to day, the brain says, 'Let's just lock this memory in.'"

Ganguly and his team found that the "locking in" process involves some surprisingly complex communication between different parts of the brain and takes place during the deep restorative slumber known as non-REM sleep.

Sleep is important because our conscious brains tend to focus on the failures, said Ganguly, who previously identified the sleep-associated brain waves that influence skill retention.

"During sleep, the brain is able to sift through all the instances it's taken in and bring forward the patterns that were successful," he said.

It was once thought that learning motor skills only required the motor cortex. But in recent years a more complex picture has emerged.

To look into this process more closely, Ganguly set rats on a task to reach for pellets. Then, the team looked at their brain activity in three regions during NREM sleep: the hippocampus, which is the region responsible for memory and navigation, the motor cortex and the prefrontal cortex (PFC).

Over the course of 13 days, a pattern emerged.

First, in a process called "fast learning," the PFC coordinated with the hippocampus, likely enabling the animal to perceive its motion with respect to the space around it and its location in that space. In this phase, the brain seemed to be exploring and comparing all the actions and patterns created while practicing the task.

Second, in a process called slow learning, the PFC appeared to make value judgements, likely driven by reward centers that were activated when the task was successful. It engaged in crosstalk with the motor cortex and the hippocampus, turning down the signals related to failures and turning up the ones related to successes.

Finally, as the electrical activity of the regions became synchronized, the role of the hippocampus diminished and the instances the brain had noted as rewarding came to the fore, where they were stored in what we call "motor memory."

While the rats were initially learning the task, their brain signals were noisy and disorganized. As time went on, Ganguly could see the signals synchronizing, until the rats were succeeding about 70 percent of the time. After that point, the brain seemed to ignore mistakes and maintained the motor memory as long as the level of success was stable. In other words, the brain starts to expect a certain level of error and does not update the motor memory.

Just like NBA players, the rats mastered a skill based on a mental model of how the world works, which they created from their physical experience with gravity, space and other cues. But this kind of motor learning wouldn't easily transfer to a situation where the cues and physical environment were different.

"If all that changed, for example, if Steph Curry was in the world of Avatar, he might not look as skilled initially," Ganguly said.

What if Curry hurt a finger and had to learn to shoot baskets a little differently? The study offered an answer.

"It's possible to unlearn a task, but to do that, you have to stress the situation to a point where you're making mistakes," Ganguly said.

When the researchers made a slight change to the rats' pellet procurement task, the rats would make more mistakes and the researchers saw more noise in the rats' brain activity.

The change was small enough that the rats didn't have to go all the way back to the beginning of their learning, only to the "breaking point," and relearn the task from there.

But because motor memory gets ingrained as a set of motions that follow each other in time, Ganguly said, changing motor memory in a complex motion like free throwing a basketball might require changing a motion that is used to initiate the whole sequence.

If Curry usually bounces a basketball twice before he throws, Ganguly said, "It might be best to retrain the brain by bouncing it only once, or three times. That way, you'd start with a clean slate." 

READ ALSO:

Warriors memory make Steph Curry UCSF failures MOTION sequence
Nepal's First Online News Portal
Published by Nepalnews Pvt Ltd
Editor: Raju Silwal
Information Department Registration No. 1505 / 076-77

Contact

Kathmandu, Nepal,


Newsroom
##

E-mail
[email protected]

Terms of Use Disclaimer
© NepalNews. 2021 All rights reserved. | Nepal's First News Portal